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SUMMARY: The geometrical constraints of the fluoride-initiated and Lewis acid-catalyzed 
intramolecular addition of allylsilanes to enone systems were shown to be governed by 
kinetic-ring-size preferences. Molecules containing adjacent quaternary carbon atoms can 
be prepared using this method. 

The potential for regio- and stereochemical control in the intramolecular version 

of a reaction is an important consequence of the geometrical requirements. We previously 

reported the first example of ring formation via a fluoride-induced intramolecular addition 1 

of a symmetrical allylsilane to a Michael acceptor.* In this Letter, we report our 

systematic investigation of the geometrical requirements in the intramolecular addition 

of unsymmetrically substituted allylsilanes3 to u,B-unsaturated enones (e.g. i+ii). These 

early results indicate that the regiochemical control exhibited in these ring closures 

depends solely on kinetic-ring size biases. 4 

FS or Lewis Acid 

- 

TMS n=1,2, or 3 

Trajectory analysis of an intramolecular Michael addition requires that the nucleophile 

attack approximately perpendicular to the plane of the electron-deficient olefin.5 

Cyclisations which readily accommodate this trajectory are favored. Inspection of models 

of iii (where n=l, 2,3) suggests that this geometrical requirement is difficult to attain 

unless the two olefin units are separated by at least two carbons. Substrate 1 meets this 

prerequisite, with its three carbon tether, and has the potential to cyclise at either 

terminus of the ally1 moiety (see Table I). In this situation, cyclisation via the primary 

center of the ambident allylic nucleophile would generate a seven-membered ring, whereas 

reaction at the secondary terminus would result in a five-membered ring. In 1978 Sakurai 

and co-workers reported that during the intermolecular fluoride-induced allylation reaction, 

alkyl substituted allylsilanes reacted at the less-substituted nucleophilic site with 

aldehydes and ketones. 6 This precedent suggested that ring formation would occur at the 

a-carbon of the allylsilane unit. We anticipated, however, that cyclization of 1 would 

produce only hydrindanone la because of the ring sizes involved and because substituted 

allylic organometallic reagents undergo intermolecular reaction at the y-carbon atom.7 

Indeed, treatment of substrate 1 with fluoride ion afforded only the expected product, 
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via the intrinsically preferred SE2' process. The failure of compound 8 to undergo 

fluoride-induced conjugate addition is consistent with related studies using a 

symmetrical allylsilane unit.18 In general, the results of the intramolecular Sakurai 

reactions indicate that the y-carbon of the allylsilane moiety has difficulty adopting 

a spatial position favorable for 1,4 attack, and instead 1,2-addition occurs. 

TABLE II 
17 

-- 

A/m , 

=,cb 

// 

0' ' 
b/or 

& 
/ 

0' 
h/or PROTODESILYLATION 

5 
CafalySt 

"& HO sa SC 

F0 76% ........... 0% ............ 0% 
TiClq* 0% ........... 00% ............ 0% 

h/or / hlor PROTODESILYLATION 
Catalyst a- H 

a 6a 6b SC 

FQ 30% . . . . . . . . . . . 40% . . . . . . . . . . ..lO% 
TIC&,* 0% . . . . . . . . . . . 30% . . . . . . . . . . ..lOX TM% 

d-’ 

--A 
/ o= c - ox 

cb 
h/or 

Catalyst 4 &/or PROTODESILYLATION 

1 H Ir 
la 

OH 2 

Fe 85% ........... 0% ............ 0% 
TiC14* 0% ........... 45% ............ 0% 

d? 
TM.5 / 

- o= s/or * 
o= fc s/or PROTODESILYLATION 

Catalyst 7 is 

!2 & OH & 

l No reaction with 
EtAlCl% or BF3'Et20 

Fe 7% . . . . . . . . . . . 0% . . . . . . . . . . ..BlX 
TiC14* 0% . . . . . . . . . . . 30% . . . . . . . . . . ..O% 

Finally, substrates possessing a four-carbon tether have the potential to form either 

an eight- or a six- membered ring (Table IIIlg). We were not surprised that the Lewis 

acid-catalyzed cyclizations of 9 and 10 gave exclusively octalones 11, since the formation 

of a six-membered ring is kinetically favored over creation of an eight-membered ring by 

a factor of about 104. The failure of the fluoride-induced process to produce bicyclic 

products is a significant limitation of this ring-forming procedure. 

In conclusion, these studies have shown that simple geometric limitations offer a 

general solution to the regiochemical problems associated with the intramolecular addition 

of allylsilanes to Michael acceptors. The course of cyclization shows a marked dependency 

upon the choice of reaction catalysis and ring size. 

TABLE III 
19,9 

-- 

a) TIC14 (86%) 

b) EtAlC12 (73%) 

c) FC gave only 
protodesilylation protodesilylation 10 

- 
TMS - 
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